Qualitative evaluation of chromatographic data from quality control schemes using a support vector machine.

نویسندگان

  • M Ventura
  • A Sanchez-Niubo
  • F Ruiz
  • N Agell
  • R Ventura
  • C Angulo
  • A Domingo-Salvany
  • J Segura
  • R de la Torre
چکیده

The qualitative evaluation of chromatographic data in the framework of external quality assurance schemes is considered in this paper. The homogeneity in the evaluation of chromatographic data among human experts in samples with analytes close to the limit of detection of analytical methods was examined and also a Support Vector Machine (SVM) was developed as an alternative to experts for a more homogeneous and automatic evaluation. A set of 105 ion chromatograms obtained by anti-doping control laboratories was used in this study. The quality of the ion chromatograms was evaluated qualitatively by nine independent experts (associating a score from 0 to 4) and also more objectively taking into account chromatographic parameters (peak width, asymmetry, resolution and S/N ratio). Results obtained showed a high degree of variability among experts when judging ion chromatograms. Experts applying extremely outlying evaluation criteria were identified and excluded from the data used to develop the SVM. This machine was built providing the system with qualitative information (scores assigned by experts) and with objective data (parameters) of the ion chromatograms. A seven-fold cross-validation approach was used to train and to evaluate the predictive ability of the machine. According to the results obtained, the SVM developed was found to be close to the reasoning process followed by the homogeneous human expert group. This machine also could provide a scoring system to sort laboratories according to the quality of their results. The qualitative evaluation of analytical records using a scoring system allowed the identification of the main factors affecting the quality of chromatographic analytical data, such as the specific analytical technique applied and the adherence to guidelines for reporting positive results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines

In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

The Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression

Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...

متن کامل

Identification areas with inundation potential for urban runoff harvesting using the support vector machine model

     Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...

متن کامل

Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)

     In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 133 1  شماره 

صفحات  -

تاریخ انتشار 2008